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Tomato yellow leaf curl virus (TYLCV) dispersed across different countries, specifically to subtropical 
regions, associated with more severe symptoms. Since TYLCV was first isolated in 1931, it has been 
a menace to tomato industrial production worldwide over the past century. Three groups were newly 
isolated from TYLCV-resistant tomatoes in 2022; however, their functions are unknown. The development 
of machine learning (ML)-based models using characterized sequences and evaluating blind predictions 
is one of the major challenges in interdisciplinary research. The purpose of this study was to develop an 
integrated computational framework for the accurate identification of symptoms (mild or severe) based on 
TYLCV sequences (isolated in Korea). For the development of the framework, we first extracted 11 different 
feature encodings and hybrid features from the training data and then explored 8 different classifiers and 
developed their respective prediction models by using randomized 10-fold cross-validation. Subsequently, 
we carried out a systematic evaluation of these 96 developed models and selected the top 90 models, 
whose predicted class labels were combined and considered as reduced features. On the basis of these 
features, a multilayer perceptron was applied and developed the final prediction model (IML-TYLCVs). We 
conducted blind prediction on 3 groups using IML-TYLCVs, and the results indicated that 2 groups were 
severe and 1 group was mild. Furthermore, we confirmed the prediction with virus-challenging experiments 
of tomato plant phenotypes using infectious clones from 3 groups. Plant virologists and plant breeding 
professionals can access the user-friendly online IML-TYLCVs web server at https://balalab-skku.org/
IML-TYLCVs, which can guide them in developing new protection strategies for newly emerging viruses.

Introduction

Tomato yellow leaf curl virus (TYLCV) is one of the most noto-
rious plants viral pathogens because it causes severe damage to 
tomato production globally [1,2]. TYLCV is a plant virus in the 
family Geminiviridae, belonging to the Old World Begomovirus 
genus, consisting of a single-stranded circular DNA mono
partite genome (DNA-A) of approximately 2.6 to 2.8 kb encapsu
lated in a twinned icosahedral shape. TYLCV DNA-A currently 
contains 8 open reading frames (ORFs), 3 ORFs on the viral sense 
strand (V1, V2, and V3), and 5 ORFs on the complementary sense 
strand (C1, C2, C3, C4, and C5) [3–7]. DNA-A contains 180 
to 200 bp of sequence within the intergenic region, including the 
conserved nanonucleotide sequence (TAATATTAC) stem loop, 
which is the viral origin of replication [8]. TYLCV is phloem-
limited virus in its hosts and is transmitted by the whitefly 

(Bemisia tabaci) in a persistent and circulated manner [9]. The 
typical phenotypes of TYLCV-infected tomato plants’ symptoms 
are stunting, severe leaf curling, and yellowing. TYLCV may also 
be transmitted via seeds, which can cause widespread occurrence 
and tremendous rates of spread to new regions, countries, and 
continents [10]. In 1931, TYLCV was reported in the Middle 
East. It has since spread throughout the tropical and subtropical 
regions [5]. After the first isolation of TYLCV in Korea in 2008, 
the virus has consistently spread across the country [11,12]. There 
has been a TYLCV outbreak in tomato crops every year for more 
than 20 years. Phylogenetic analysis of TYLCV isolates from 
Korea revealed 2 groups; the “Masan (TYLCV-KG1)” group was 
most similar to the TYLCV Israel strain (GenBank: X76319) as 
a severe strain, and the “Jeju/Jeonju (TYLCV-KG2)” group was 
comparable to the Japanese group (GenBank: AB192966) as a 
mild strain [13].

Citation: Bupi N, Sangaraju VK,  
Phan LT, Lal A, Vo TTB, Ho PT,  
Qureshi A, Tabassum M, Lee S, 
Manavalan B. An Effective Integrated 
Machine Learning Framework for 
Identifying Severity of Tomato 
Yellow Leaf Curl Virus and Their 
Experimental Validation. Research 
2023;6:Article 0016. https://doi.
org/10.34133/research.0016

Submitted 3 September 2022  
Accepted 7 November 2022  
Published 10 January 2023 

Copyright © 2023 Nattanong Bupi et al.  
Exclusive Licensee Science and 
Technology Review Publishing House. 
No claim to original U.S. Government 
Works. Distributed under a Creative 
Commons Attribution License  
(CC BY 4.0).

https://doi.org/10.34133/research.0016
mailto:cell4u@skku.edu
mailto:bala2022@skku.edu
https://doi.org/10.34133/research.0016
https://doi.org/10.34133/research.0016


Bupi et al. 2023 | https://doi.org/10.34133/research.0016 2

Most tomato farmers in Korea cultivate TYLCV-resistant 
cultivars containing different Ty loci because of the economic 
importance of TYLCVs. Several TYLCV resistance gene sources 
have been identified, including Ty-1, Ty-2, Ty-3, Ty-4, and Ty-5 
[14–18]. Over the past decade, this strategy has been effective 
in protecting tomatoes from TYLCV infection. However, 
recently, TYLCV has reemerged in Ty-resistant cultivars of 
tomato. The genetic diversity of TYLCV populations may have 
contributed to the breakdown of resistance, which has led to 
the reemergence of new viruses and diseases [19]. There are 
various mechanisms that can result in variations in the virus 
population, such as mutations, inversions of nucleic acid base 
sequences, recombination, and mixed infections [20]. In the 
case of cotton leaf curl Multan virus, researchers demonstrated 
the comparative analysis of genetic variability and evolution-
ary patterns using bioinformatics-based populations, but this 

was not sufficient [21]. This molecular virology research com-
bined with machine learning (ML)-based informatics may 
predict newly emerging viruses and viral evolution in advance 
[22]. According to Lalmuanawma et al. [23], the recent COVID-
19 pandemic has evidenced that ML and artificial intelligence 
applications have helped medical experts and policymakers 
cope with the situation. Inspired by these studies, we con-
ducted an interdisciplinary approach to predict the functions 
of novel TYLCV groups (TYLCV-KG3, TYLCV-KG4, and 
TYLCV-KG5) and validated our predictions through exper-
imental tests (Fig. 1).

In this study, we developed a novel integrated ML framework 
for identifying the symptom severity of TYLCV from the 
sequence information (Fig. 2). It involves the following steps: 
(a) we collected TYLCV-KG1 and TYLCV-KG2 nucleotide 
sequences and converted them into protein sequences using the 

Fig. 1. The convergence of computational predictions and wet lab experiments to validate the symptom severity of TYLCV was summarized in the following paragraphs. 
1: Collection of the training dataset. 2: Generation of the training dataset using machine learning. 3: Training dataset-integrated approach. 4: Prediction results of the training 
dataset. 5: Survey of the TYLCV sample. 6: Identification and sequencing analysis of TYLCV. 7: Using the novel TYLCV isolates as the blind predictions for machine learning. 
8: Prediction results of the novel TYLCV isolates. 9: Construction infectious clones and agro-inoculation of the novel TYLCV isolates. 10: Phenotype observation of inoculated 
plants. 11: Validation of the predicted TYLCV symptom severity by using plant phenotypes.
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Fig. 2. An overview of our IML-TYLCVs for predicting mild and severe strains. This figure illustrates the multiple stages involved in the construction of an integrated machine 
learning framework.
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ORF finder tool. (b) We explored 12 different feature descrip-
tors, including 11 conventional descriptors and a linear com-
bination of all 11 descriptors (hybrid features), as well as 8 ML 
classifiers, including 6 tree-based classifiers, support vector 
machines, and multilayer perceptrons (MLP). (c) Using rand-
omized 10-fold cross-validation, we constructed 96 predic-
tion models and selected the top 90, whose predicted class labels 
were taken into consideration as reduced features through sys-
tematic analysis. These reduced features were then used 
to develop the final prediction model (IML-TYLCVs) using 
MLP (Fig. 2). Simultaneous analysis of novel TYLCV sequences 
extracted from Ty-resistant tomato cultivars showing typical 
TYLCV disease symptoms in Korea led to the identification of 
3 novel TYLCV groups. Using the IML-TYLCVs program, we 
made blind predictions of symptom severity on novel TYLCVs, 
including TYLCV-KG3, TYLCV-KG4, and TYLCV-KG5. The 
results showed that TYLCV-KG3 and TYLCV-KG4 were severe 
strains, while TYLCV-KG5 was mild. To verify the computational 
prediction, infectious clones of the 3 isolates were constructed 
for virus-challenging experiments. The prediction was confirmed 

by analyzing the phenotypes of the plants, the severity of the 
symptoms, and the interaction between gene expressions.

Results

Construction of baseline models
In order to understand the similarities and differences between 
mild and severe strains, we conducted a compositional analysis 
based on the training dataset (Table S1). Figure S1A demon-
strates that mild and severe strains have slightly different amino 
acid compositions (AAC) (P > 0.05). However, the dipeptide 
composition (DPC) compositional analysis revealed that 18 
dipeptides (Fig. S1B) were significantly different between the 
mild and severe strains (P < 0.05), indicating that such differ-
ences may contribute to their differing characteristics.

To develop the baseline models, we employed 12 different 
feature descriptors, including AAC, dipeptide deviation from 
the expected mean (DDE), quasi-sequence order (QSO), DPC, 
grouped DPC (GDPC), grouped tripeptide composition (GTPC), 
3 different aspects of composition transition and distributions 

Fig. 3. Performance comparison of 12 different encodings with respect to different classifiers. (A) Random forest (RF), (B) Gradient boosting (GB), (C) Extremely randomized 
tree (ERT), (D) Light gradient boosting (LGB), (E) Extreme gradient boosting (XGB), (F) Adaboost (AB), (G) Support vector machine (SVM), and (H) Multilayer perceptron 
(MLP). MCC, Mathew’s correlation coefficient; ACC, accuracy; Sn, sensitivity; Sp, specificity; AUC, area under the curve.

Fig. 4. Performance of different classifiers based on (A) probability scores, (B) class information, and (C) their combination (PC). The X axis represents the feature dimension, 
and the Y axis represents the performance as expressed by MCC.
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(CTDT, CTDC, and CTDD), the composition of k-spaced amino 
acid group pairs (CKSGP), k-spaced conjoint triad (KSC), and 
hybrid features (linear combination of 11 feature descriptors), 
and eight different ML classifiers, including random forest (RF), 
gradient boosting (GB), extremely randomized tree (ERT), light 
gradient boosting (LGB), extreme gradient boosting (XGB), 
Adaboost (AB), support vector machine (SVM), and MLP. Each 
classifier was trained 50 times using a randomized 10-fold 
cross-validation procedure to determine the optimal parameters. 
Fig. 3 illustrates the performance of the final 96 baseline models 
according to their optimal parameters.

The results indicate that DPC and DDE encodings achieved 
similar performance and ranked among the top 2 regardless 
of the classifiers used. However, the performance of the 
remaining encodings differed between classifiers. A hybrid 
feature achieved the best performance while using RF (accu-
racy (ACC) of 0.929); however, when using MLP, the perform
ance substantially decreased (0.688). Similarly, CTDT encoding 
performed better when SVM and ANN were employed (0.916 
and 0.888, respectively) but deteriorated when LGB was used 
(0.834). It appears that the necessity of experimenting with 
different classifiers on each encoding set is vital to under-
standing ML behavior and possibly selecting the best algo-
rithm. Overall, RF, ANN, LGB, AB, ERT, GB, SVM, and XGB 
achieved the best area under the curve (AUC) values of 0.926, 
0.936, 0.962, 0.951, 0.947, 0.939, 0.940, and 0.954, respectively. 
In general, one of these models has been selected and consid-
ered as the final model. However, we utilized all baseline mod-
els that had an ACC of greater than 70% in order to develop 
a more reliable and robust model.

Development of IML-TYLCVs
The baseline models were ranked according to the Mathew’s 
correlation coefficient (MCC), and the top 10 to 90 models 
were selected with a 10-model interval. Each baseline model 
is capable of predicting class scores and probability scores for 
severe and mild cases. Therefore, we considered class label in
formation, probability score (severe), and their combination 
(probability and class (PC)) separately, thus obtaining 3 dif
ferent groups. In each group, there are 9 different feature di
mensions, each of which is input into 8 different classifiers, 
and the corresponding prediction models are developed using 

50 randomized 10-fold cross-validation. A comparison of the 
performance of different classifiers using probabilistic score 
features, class labels, and PC information is presented in Figs. 
S2 to S4, respectively. In order to provide an overview of the 
comparison between these models, we compared them in 
terms of their MCC, as shown in Fig. 4. For all 3 groups, the 
majority of the classifiers reached their peak performance 
within 40D features and then began to deteriorate as the fea-
tures were added. In the case of class labels, MLP performance 
remains stable and reached its peak with an MCC of 0.930, and 
the corresponding feature dimension is 90. It is noteworthy 
that the MLP-based model outperforms 215 other models. 
Therefore, we selected this model as the final model and named 
it as IML-TYLCVs.

Furthermore, we used the IML-TYLCVs server to perform 
blind predictions on the TYLCV-KG3, -KG4, and -KG5 se
quences. The analysis of individual sequence predictions will 
not be useful for drawing conclusions about each group. To 
determine whether a strain is severe or mild, we computed 
an average predicted probability score (severe) from all the 
sequences related to each group and utilized the standard cutoff 
of 0.5. The predicted scores for IML-TYLCVs for TYLCV-KG3 
and -KG4 are 0.524 (severe) and 0.695 (severe) respectively, 
whereas for TYLCV-KG5 is 0.195 (mild).

Comparison of IML-TYLCVs with the top 5 baseline 
models on training and blind predictions
In the training, IML-TYLCVs achieve MCC, ACC, sensitivity 
(Sn), specificity (Sp), and AUC values of 0.930, 0.964, 0.960, 
0.9714, and 0.969, respectively (Fig. 5A). In particular, the MCC 
of IML-TYLCVs increased by 2.9% to 6.22%, ACC by 1.25% 
to 3.53 %, and AUC by 0.71% to 4.33% compared to the top 5 
baseline models, demonstrating that an integrated approach 
based on a systematic analysis has improved prediction accu-
racy. In the case of blind predictions, the prediction outcomes 
are the same across all models; however, the predicted proba-
bility scores differ significantly across these 6 models. Com
pared to baseline models, IML-TYLCV generated slightly higher 
probability scores for TYLCV-KG3, significantly higher scores 
for TYLCV-KG4, and significantly lower scores for TYLCV-KG5 
(Fig. 5B), suggesting that integrated approaches can generate 
higher confidence when making decisions (severe/mild).

Fig. 5. Performance comparison between IML-TYLCVs and the top 5 baseline models on training dataset (A) and blind predictions (B).
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Model interpretation
The IML-TYLCVs were trained using the optimal class label 
feature vector that produced a better performance than the base-
line predictors. However, there is a lack of information regard-
ing the directionality and contribution of the class label features 
to the integrated model. The SHapley Additive Explanation 
(SHAP) has been used to illustrate the most significant features 
and their relationship to the results of IML-TYLCVs. Figure 6 
shows that IML-TYLCVs generate predictions as line charts 
above the heatmap matrix (f(x)). Below the heatmap, bar graphs 
illustrate the global importance of each feature, and a list of the 
top 19 most important features is shown according to their 
global importance. The results indicate that 9 different encod-
ings (DPC, CTDT, CTDC, CTDD, CKSGP, DDE, KSC, hybrid, 
and GDPC) based on 7 classifiers (RF, ERT, GB, SVM, AB, XGB, 
and LGB) contributed to the final prediction of IML-TYLCVs. 
Six SVM-based baseline models, 4 LGB-based baseline models, 
3 AB-based baseline models, 2 XGB-based and 2 GB-based 
baseline models each, and 1 RF and 1 ERT-based baseline model 
each contributed the most to the final prediction. A higher value 
for most features is more likely to predict a severe strain, while 
a lower value is more likely to predict a mild strain. In conclu-
sion, these results indicate that IML-TYLCV’s remarkable pre-
dictive performance can be attributed to both compositions 
and physicochemical properties (PCPs) derived from baseline 
models.

Identification of novel TYLCVs
To collect and detect viral DNA occurrences in tomato sam-
ples, we processed through polymerase chain reaction (PCR) 
amplification using TYLCV-specific primers, all symptomatic 
samples were found positive as an amplicon of approximately 
1.1 kb. In order to reduce external factor interference, we at
tempted to detect possible co-infection with tomato leaf curl 
New Delhi virus (ToLCNDV), tomato yellow leaf curl Thailand 
virus (TYLCTHV), and tomato yellow leaf curl Kanchanaburi 
virus (TYLCKaV). The PCR result showed that only TYLCV 
was detected, indicating there was no co-infection event in the 
collected samples. The coat protein (CP) of TYLCV amplicons 
were sequenced, and CP sequence analysis of 40 novel isolates 
using BLAST (basic local alignment search tool) showed 99.61% 
to 99.98% nucleotide sequence similarity with the TYLCV-
isolated Gwangju30 (GenBank: HM856913) [24].

Analysis of genetic variation and diversity of novel 
TYLCV groups
The strain demarcation of the novel TYLCV groups was also 
identified. All 40 full-genome sequences had a pairwise iden-
tity of more than 91% with TYLCV isolated in Korea (GenBank: 
KF225312). Regarding the phylogenetic analysis, the results 
showed that 40 sequences of novel TYLCV isolates and 
TYLCV-KG1/KG2 were in separate clades, and 3 novel groups 
of TYLCV newly emerged in Korea. Fourteen isolates from 
the first group shared the most pairwise identity closely with 
TYLCV-KG1 referred to as TYLCV-KG3, 10 isolates known 
as TYLCV-KG4 were in the second group, and 16 isolates in 
the last group is classified as TYLCV-KG5 (Fig. 7A). The pair-
wise sequence alignment generated by Sequence Demarcation 
Tool (SDT) showed that 14 isolates of the TYLCV-KG3 group 
shared pairwise identity between 98.65% and 99.23% with 
TYLCV-KG1 (GenBank: HM130912), meanwhile 10 isolates 
of the TYLCV-KG4 group shared pairwise identity between 
92.36% and 93.12% with TYLCV-KG2 (GenBank: HM130913), 
and 16 isolates of TYLCV-KG5 exhibited around 93% simi-
larity with TYLCV-KG1 (GenBank: HM130912) (Fig. S5 and 
Table S2). The results indicate that TYLCV-KG3 is a variant 
of TYLCV-KG1, while TYLCV-KG4 and TYLCV-KG5 are new 
strains of TYLCV groups in Korea  (KGs).

Construction of infectious clones of novel TYLCV 
groups for virus challenging
To confirm the blind prediction based on the development of 
plant phenotypes infected with the novel TYLCV groups, 3 
TYLCV genomes were selected as TYLCV-KG3 (GenBank: 
ON982178), TYLCV-KG4 (GenBank: ON982198), and TYLCV-
KG5 (GenBank: ON982202) groups as representatives of 
40 TYLCV novel isolates. The infectious clones (Fig. 7B) of the 
3 novel TYLCV isolates were constructed as pCAM1303-
TYLCV-KG3, pCAM1303-TYLCV-KG4, and pCAM1303-
TYLCV-KG5. Agro-inoculated tomato plants with 4 different 
infectious clones, except TYLCV-KG2, showed a very light 
yellowing of leaflet margins on apical leaves compared to mock 
plants at 7 day post inoculation (dpi). At 14 dpi, tomato plants 
that were inoculated with TYLCV-KG1, TYLCV-KG3, and 
TYLCV-KG4 clones showed phenotypes of yellowing and 
minor curling at the leaflet ends. After 21 dpi, leaves in inocu-
lated plants exhibited inclusive leaf yellowing, curling, and a 
mild reduction of leaflet size depending on the infectious clones 
(Fig. S6). At 28 dpi, only TYLCV-KG3 and TYLCV-KG4 infected 
tomato plants developed symptoms of severe stunting, yellow-
ing, major leaf cupping, and curling, whereas TYLCV-KG2 and 
TYLCV-KG5 infected plants showed milder symptoms (Fig. 8A 
and B). Mock-inoculated tomato plants with pCAMBIA-1303 
as the control group did not produce any TYLCV symptoms. 
Strikingly, symptoms of TYLCV-KG3 and TYLCV-KG4 within 
7 dpi are more severe compared to TYLCV-KG1, which was 
characterized as a severe strain [25].

TYLCV symptom severity correlates with viral DNA 
copy numbers
To evaluate the plant phenotypes of the novel TYLCV groups 
based on TYLCV symptom severity score and viral DNA copy 
number, the inoculated plants were investigated. TYLCV symp-
tom severity scores and TYLCV copy numbers in TYLCV-KG3 
and TYLCV-KG4 infected plants increased gradually from 7 to 

Fig. 6. A heatmap plot of the SHAP values for the top 19 probabilistic features based 
on the training dataset.
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28 dpi. At 28 dpi, the symptom severity scores with copy num-
bers of TYLCV-KG1, TYLCV-KG2, TYLCV-KG3, TYLCV-KG4, 
and TYLCV-KG5 were 3.2 ± 0.2 with 4.01 ± 1.12 × 107 copy 
numbers/μl, 0.7 ± 0.2 with 31.83 ± 3.49 copy numbers/μl, 3.8 ± 
0.2 with 1.46 ± 0.15 × 108 copy numbers/μl, 4.0 ± 0.0 with 1.82 ± 
0.64 × 108 copy numbers/μl, and 0.7 ± 0.2 with 1.82 ± 0.64 × 
108 copy numbers/μl, respectively (Table S3). Compared to 
TYLCV-KG1, known as TYLCV severe strain [13] in 2010, 
TYLCV-KG3 and TYLCV-KG4 showed significantly more 
severe symptoms at 14, 21, and 28 dpi (Fig. 8C and D). The 
infectivity of TYLCV was further confirmed by PCR using 
TYLCV detection primers (Fig. 8E).

The novel TYLCV group breaking down TYLCV 
resistance phenotype in Ty-1 and Ty-2 breeding line
To further evaluate the symptom severity of the novel TYLCV 
groups using TYLCV resistance tomato breeding lines harboring 
Ty-1 or Ty-2, tomato breeding lines were inoculated with the 
infectious clones of 3 severe strains (TYLCV-KG1, TYLCV-KG3, 
and TYLCV-KG4). At 7 dpi, Ty-1 and Ty-2 breeding lines inoc-
ulated with TYLCV-KG1, TYLCV-KG3, and TYLCV-KG4 
started to show minor leaf curling. After 14 dpi, both TYLCV-
KG3-inoculated Ty-1 and Ty-2 breeding lines displayed leaf 

yellowing and curling; meanwhile, only the TYLCV-KG4-
inoculated Ty-1 breeding line continued to show TYLCV 
symptoms (Fig. 9A). However, in tomato plants that acquired 
Ty-1 and Ty-2, inoculated with TYLCV-KG1 showed very mild 
symptoms in comparison with mock plants. Additionally, at 
14 dpi, the relative expression of 4 ORFs (V1, V2, C1, and C4) 
in TYLCV-KG3 was significantly expressed on Ty-1 and Ty-2 
breeding lines comparing with TYLCV-KG4 (P < 0.001). On 
the contrary, TYLCV-KG4 only showed their substantial ex
pression on Ty-1 breeding lines compared to TYLCV-KG1 
(P < 0.001) (Fig. 9B). Results of viral copy numbers of TYLCV-
KG1, TYLCV-KG3, and TYLCV-KG4 in tomato breeding lines at 
14 dpi were shown in Fig. 9C and Table S4. The viral copy num
bers in TYLCV-KG3 on Ty-1 and Ty-2 breeding lines was sig
nificantly higher (P < 0.001); on the other hand, TYLCV-KG4 was 
significantly higher (P < 0.001) only on Ty-1 breeding lines com
pared with TYLCV-KG1. However, the relative gene expression 
of the Ty-1 and Ty-2 genes at 2 time points on 7 and 14 dpi after 
novel severe TYLCV-inoculated plants was significantly higher 
(P > 0.001) than mock-inoculated plants, and no significant dif
ference was observed in their expression levels among TYLCV-
inoculated plants at any time point (Fig. 9D). The infectivity of 
TYLCV in tomato breeding lines was confirmed by PCR in the 

Fig. 7. The results of the phylogenetic tree and the construction of infectious clones map of novel TYLCV isolates in this study. (A) The phylogenetic reconstruction of 40 
samples of full-genome novel TYLCV isolates showed different clades; phylogenetic tree constructed using the maximum likelihood method at 1,000 bootstrap replicates in 
MEGA software version X. Additional full-genome sequences of begomovirues infecting tomatoes such as tomato yellow leaf curl Kanchanaburi virus (TYLCKaV), squash leaf 
curl China virus (SLCCNV), tomato leaf curl New Delhi virus (ToLCNDV), pepper yellow leaf curl Thailand virus (PepYLCTHV), tomato yellow leaf curl China virus (TYLCCNV), 
and tobacco leaf curl virus (TLCV) were obtained from NCBI GenBank. The full genome of the sweet potato leaf curl virus (SPLCV), which is a begomovirus noninfecting 
tomato, was used as an outgroup for the root tree. The colors in the phylogenetic tree represent the outgroup as the yellow clade, the other group as the pink clade, TYLCV-
KG1 as the orange clade, TYLCV-KG2 as the purple clade, TYLCV-KG3 as the red clade, TYLCV-KG4 as the green clade, and TYLCV-KG5 as the blue clade. (B) The genome 
organization of TYLCV, DNA-A component consists of a conserved stem loop structure (hairpin) within the intergenic region (IR) and ORFs encoded on the virion sense (V) or 
complementary sense (C) strand. V1, coat protein; V2, movement protein; C1, replication-associated protein; C2, transcriptional activator protein; C3, replication enhancer 
protein; C4, pathogenicity protein. The TYLCV infectious clone construction used the partial tandem repeat construction. Two fragments of each component were generated, 
ligated with the pCAMBIA-1303 vector, and transformed into Agrobacterium tumefaciens strain GV3101.
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second week after inoculation (Fig. 9E). As a result, TYLCV-KG3 
is the most severe isolate compared with all treatments using symp-
toms of TYLCV severity and viral copy numbers.

Discussion
ML has recently been applied to a variety of fields, including 
life sciences and mobile applications used on a daily basis. 
Bioinformatics researchers develop prediction models on the 
basis of experimental data, with the assumption that these 
models will be useful to experimentalists. As a result, many 
prediction models have been developed [25], but their effi-
ciency cannot be evaluated in real time, resulting in a huge 
gap between method developers and experimental scientists. 
Computational biologists, bioinformaticians, and computer 

scientists collaborated closely with experimentalists during 
the recent COVID-19 pandemic to assist medical experts and 
policymakers [26], ultimately saving the lives of many people. 
In this study, we proposed a novel integrated ML framework 
called IML-TYLCVs that accurately predicts mild/severe strains 
from the sequence information. The IML-TYLCVs makes use 
of 90 baseline models that have been trained using 12 different 
feature encodings and 8 different classifiers.

In sequence analysis, 2 novel groups of TYLCV strains 
(TYLCV-KG4 and TYLCV-KG5) were found to share approx-
imately 92% and 93% sequence identity to TYLCV-KG2 and 
TYLCV-KG1, respectively [31]. However, TYLCV-KG3 shared 
a pairwise identity of 98% with TYLCV-KG1. On the basis of 
the phylogenetic and sequence analysis, it is hard to reveal the 
novel gene function. In general, phylogenetic analyses were 

Fig. 8. Plant phenotypes observation of agro-inoculation and quantitative results. The tomato plant phenotype observation of agro-inoculation with TYLCV novel group infectious 
clone including the quantitative viral DNA copy number using a standard curve and the symptom severity score. (A and B) Phenotypes observed in tomato cv. MoneyMaker 
plants at 28 dpi with infectious clones of TYLCV-KG1, TYLCV-KG2, TYLCV-KG3, TYLCV-KG4, TYLCV-KG5, and mock. (C and D) Average quantitative viral DNA copy number and 
average symptom severity score of the TYLCV 5 groups were assayed at 7 to 28 dpi. DNA copies were expressed in copies/μl. (E) PCR analysis with the leaf from 5 groups of 
TYLCV at 7 to 28 dpi on 1% agarose gel. Lane P, positive control; lane N, no template control; lane Mock, total DNA of mock plant control; lane KG1–5, total DNA from the leaf 
of 5 groups of TYLCV. (C): ###P < 0.001 for TYLCV-KG3 versus TYLCV-KG1, and ***P < 0.001 for TYLCV-KG4 versus TYLCV-KG3. (D): *P < 0.1 TYLCV-KG3 versus TYLCV-KG1, 
**P < 0.01 TYLCV-KG4 versus TYLCV-KG1, and ***P < 0.001 for TYLCV-KG4 versus TYLCV-KG1.
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carried out using DNA sequences to predict the relationships 
among species [27]. However, there are studies where gene func-
tions could not be determined through phylogenetic analysis 
[28] even though they used high-throughput gene expression data 
[29]. Interestingly, IML-TYLCVs accurately predict the symp-
tom severity of novel groups using ORF information. 
However, when we developed the prediction models based on 
genome sequences, the preliminary results showed 100% accu-
racy on the training dataset, and blind prediction showed that 
TYLCV-KG4 and TYLCV-KG5 were severe strains and TYLCV-
KG3 was a mild strain. This is mainly due to the bias in the 
genome sequence. To overcome such bias, we used ORFs (protein 
sequences) to develop a reliable prediction model.

To verify and confirm the computational predictions, tomato 
plants were inoculated with infectious clones and obtained from 
5 different groups. Among these, TYLCV-KG4 was observed to 
be the most severe strain based on tomato plant phenotypes, 
symptom severity scores, and viral DNA copy number. However, 
TYLCV-KG2 and TYLCV-KG5 produced mild symptoms. In the 
case of tomato breeding lines, TYLCV-KG3 was the most severe 
strain compared to the other strains. In previous studies, 2 strains 
of TYLCV (KG1 and KG2) did not induce any symptoms in 
TYLCV-resistant cultivars [10]. We expect that these 2 severe 
TYLCV strains (KG3 and KG4) might be mutated to become more 
infectious in tomatoes harboring Ty genes. Although TYLCV-KG3 
has a high sequence identity to TYLCV-KG1, TYLCV-KG3 shows 
more severe symptoms mainly because of a few mutations hidden 
in the DNA sequence information. Another reason might be eco-
logical fitness as a mechanism for increasing their evolutionary 
potential and local adaptation [30]. In general, the Ty-1 gene has 
been the major focus in TYLCV resistance worldwide [31,32]. 
However, Ty-1-resistant tomato has been observed as not effective 
in the fields and against mixed infection [33]. Therefore, we col-
lected 40 tomatoes with typical TYLCV-like symptoms from 
TYLCV-resistant cultivars harboring Ty genes and made sure that 
there was no mixed infection.

Further research is needed to understand the roles and 
functions of mutated genes and altered nucleotide sequences 
among different groups of KGs. With a large number of DNA 
sequences of different KGs available in the future, we plan to 
apply ML-based novel approaches directly identify mutations 
that alter the function of KGs, which will assist experimentalists 
in annotating uncharacterized sequences. On the basis of the 
limited resources available at the moment, we developed an inte-
grated computational framework for identifying novel functions 
for KGs and then validating these functions experimentally. 
Nevertheless, the present study has the following limitations: 
(a) a smaller training dataset due to a lack of properly updated 
sequences. (b) Prediction model developed exclusively on TYLCVs 
that may not apply to other species, including begomoviruses. For 
the convenience of experimentalists, we have provided the user-
friendly online IML-TYLCVs web server that can be accessed 
at https://balalab-skku.org/IML-TYLCVs. Plant virologists and 
plant breeding professionals can use our web server to obtain 
information that will assist them in developing more effective 
strategies for combating newly emerging viruses.

Materials and Methods

Dataset construction
The nucleotide sequences TYLCV-KG1 and TYLCV-KG2 
(Table S1) are considered as the training dataset. However, 

Fig. 9. Phenotype observation of tomato breeding lines of agro-inoculation with the 
novel severe strains, their relative gene expression, and quantitative viral DNA copy 
results. (A) Phenotypes observed in tomato breeding lines consist of Ty-1, Ty-2, and 
susceptible line at 14 dpi with infectious clones of TYLCV-KG1, TYLCV-KG3, TYLCV-
KG4, and mock. (B) The log10 relative fold ORF-gene expression levels of TYLCV-KG1, 
TYLCV-KG3, and TYLCV-KG4 challenging with tomato breeding lines; we calibrated 
the values with mock plant levels (set to 1) and normalized relative to EF1α gene. 
(C) Relative fold in gene expression of the Ty-1 and Ty-2 gene against TYLCV-KG1, 
TYLCV-KG3, and TYLCV-KG4. The values were normalized and calibrated with mock 
Ty-1 and Ty-2 plant levels at 7 to 14 dpi (set to 1). (D) Average quantitative viral DNA 
copy number of TYLCV-KG1, TYLCV-KG3, and TYLCV-KG4 challenging with tomato 
breeding lines assayed at 14 dpi. (E) PCR analysis using the leaf from inoculated 
breeding lines (Ty-1, Ty-2, and susceptible line) challenged with TYLCV-KG1, TYLCV-
KG3, and TYLCV-KG4 at 14 dpi on 1% agarose gel. Lane P, positive control; lane N, no 
template control; lane Mock, total DNA of mock plant control; lane Sus, susceptible 
line; lane Ty-1, Ty-1 breeding line; lane Ty-2, Ty-2 breeding line; KG1–4, total DNA from 
the inoculated leaf of 3 groups of TYLCV. DNA copies were expressed in copies/μl. 
(B) and (C): ***P < 0.001 for TYLCV-KG3 or TYLCV-KG4 versus TYLCV-KG1 in Ty-1 
breeding lines and ###P < 0.001 for TYLCV-KG3 versus TYLCV-KG1 in Ty-2 breeding 
lines with different four ORFs. (D): ***P < 0.001 and ###P < 0.001 for mock breeding 
lines versus inoculated breeding lines and ns for not significant.
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uncharacterized sequences TYLCV-KG3, TYLCV-KG4, and 
TYLCV-KG5 (from Korea) were used for blind prediction. 
The ORF finder tool [34] was used to convert all nucleotide 
sequences into ORFs (protein sequences), including V1, V2, 
C1, C2, C3, and C4 proteins. Consequently, we excluded iden-
tical ORFs that resulted in 50 TYLCV-KG1, 34 TYLCV-KG2, 
52 TYLCV-KG3, 42 TYLCV-KG4, and 57 TYLCV-KG5 seq
uences. In particular, TYLCV-KG1 and -KG2 are used for the 
development of prediction models, while the remaining 
sequences are used for blind prediction.

Feature encodings
In this study, we employed 11 different feature encodings (AAC, 
CTDT, GTPC, CKSGP, DDE, KSC, CTDC, DPC, QSO, CTDD, 
and GDPC) and hybrid features (linear combination of the 11 
encodings). The mathematical expressions of these encodings 
have been discussed in previous studies [35–37], and they can 
be extracted using BioSeq-Analysis [38] and iFeature [39]. The 
following is a brief description of these encodings.

AAC
It encodes 20D features describing the proportion of each stand-
ard amino acid residue present in a specific protein sequence.

DPC
Another commonly used encoding for protein/peptide-based 
classification. DPC encodes 400D features that provide infor-
mation about all possible DPCs present in the given sequence.

GDPC and GTPC
The standard 20 amino acids can be classified into 5 groups 
according to their PCPs: aromatic (g1 ∈ F, Y, and W), positively 
charged (g2 ∈ R, K, and H), aliphatic (g3 ∈ A, V, G, L, M, and 
I), uncharged (g4 ∈ C, P, N, S, T, and Q), and negatively charged 
(g5 ∈ D or E). Using these properties, GTPC and GDPC gen-
erate 125D and 25D features, respectively.

CTDC, CTDT, and CTDD
The PCPs (solvent accessibility, normalized van der Waals vol-
ume, polarizability, hydrophobicity, charge, polarity, and sec-
ondary structures) have been classified into 3 groups. These 
properties enable CTDC, CTDD, and CTDT to encode 39D, 
195D, and 39D features, respectively.

KSC
The KSC descriptor is derived from the Conjoint CTriad de
scriptor, which calculates both the number of three continuous 
amino acid units and continuous amino acid units separated 
by any k residues (k = 5). The KSC encodes 343D feature 
vectors.

QSO
The QSO takes into account of sequence order effect (i.e., PCP 
distance between amino acids) and generates a 100D feature 
vector.

CKSGP
A CKSGP is a variation of the composition of k-spaced amino 
acid pair descriptor that computes the frequency of amino acid 
group pairs separated by any k residues (k = 10). Finally, CKSGP 
encodes the 275D feature vector.

DDE
Three parameters are computed to construct the DDE feature 
vector: the theoretical mean (Tm), DPC, and theoretical vari-
ance (Tγ).

where Cp and Cq are the number of codons that code for the 
first and the second amino acids, respectively, in the given pep-
tide “ab”. The CN was 61, excluding stop codons.

Hybrid
It is a linear combination of all 11 encodings, which resulted in 
a 1961D feature vector.

Conventional ML algorithms
We considered 8 different ML classifiers: SVM, RF, ERT, GB, 
AB, XGB, LGB, and ANN. Details of these algorithms and pa
rameter ranges have been provided in our previous studies 
[40,41]. Here, we have employed the same parameter search 
ranges for tuning each of the ML hyperparameters by running 
50 times randomized 10-fold cross-validation. A median pa
rameter was used in the development of the respective ML-based 
final prediction model. Notably, we employed all possible 
commonly used classifiers for systematic analysis to develop 
a novel integrated framework.

Model evaluation
The 5 commonly used evaluation metrics were considered to 
evaluate the model performance [42,43], including MCC, Sn, 
Sp, ACC, and AUC. The metrics are defined as follows:

where TP, TN, FP, and FN denote the true positives, true neg-
atives, false positives, and false negatives, respectively. Further
more, receiver operating characteristic curves and AUC values 
were used to assess the overall performance.

DNA extraction of the novel TYLCVs
The leaves of tomato plants (Solanum lycopersicum) showing the 
typical symptoms of TYLCV disease such as curling, yellowing, 
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and stunted growth were collected from different farms located 
in Korea in November 2021. Forty isolated TYLCV samples from 
40 Danong tomatoes were collected from Chungcheongnam-do, 
Ganwon-do, Gwangju, Gyeongnam-do, and Jeollanam-do 
(Table S5 and Fig. S7). Using the Viral Gene-spin Viral DNA/
RNA Extraction Kit (iNtRON Biotechnology, Seongnam, 
Korea), viral DNA was extracted from 40 samples from var-
ious locations.

Viral DNA detection and genome cloning
Viral DNA detection was performed using the T100 Thermal 
Cycler (Bio-Rad, Hercules, CA, USA) with a final reaction 
volume of 20 μl, which contains TYLCV-specific primers 
encoding the V1 gene of TYLCV isolates based on a previous 
study [13]. The specific primers of 3 species of Begomovirus-
infecting tomato, including ToLCNDV, TYLCTHV, and 
TYLCKaV, were designed for the detection of newly emerg-
ing viruses and diseases using Primer-BLAST (Table S6) [44] 
and a universal primer pair specific for alphasatellite and 
betasatellite [45,46], to test whether DNA satellites were asso-
ciated with these isolates. The AccuPower ProFi Taq PCR 
Master Mix (Bioneer, Daejeon, Korea) was used for the am
plification and DNA detection in PCR. The PCR conditions 
were as follows: an initial denaturation at 94 °C for 3 min, 
followed by 35 cycles (denaturation at 94 °C for 30 s, anneal-
ing at 58 °C for 30 s, and extension at 72 °C for 1 min), and a 
final extension at 72 °C for 10 min. Then, the PCR products 
were electrophoresed on a 1% agarose gel. Furthermore, the 
PCR products were sequenced using Sanger sequencing at 
the Macrogen Institute (Macrogen, Seoul, Korea). In this ex
periment, the PCR reaction per DNA sample was performed 
at least 3 times.

Newly designed full-genome primers were used to amplify 
the full sequence of TYLCV (Table S6). The target viral DNA was 
cloned into the pGEM T-easy vector (Promega, Madison, USA) 
and then individual recombinant plasmids were sequenced at 
the Macrogen Institute (Macrogen, Seoul, Korea) and submitted 
to GenBank. After that, the obtained sequences were compared 
to their identities using the BLAST program (http://blast.ncbi.
nlm.nih.gov/Blast.cgi). The full genomes of 40 isolated TYLCV 
samples in this study were submitted to GenBank and assigned 
accession numbers (Table S2).

Sequence analysis and pairwise comparisons
To organize and distinguish the evolutionary phylogenetic 
relationships of TYLCV in Korea, 2 datasets were assembled 
and aligned with MUSCLE [47]. First, a pairwise sequence 
alignment was performed on the TYLCV dataset and generates 
identities between every pair of sequences in the dataset with 
SDT software version 1.2 (http://www.cbio.uct.ac.za/SDT) as 
recommended by the International Committee on Taxonomy 
of Viruses Geminiviridae study group. Second, the phyloge-
netic reconstruction of 40 samples of novel TYLCV isolates 
and the full-genome sequences of the reported TYLCV in 
Korea (KG1 and KG2) was constructed using the maximum 
likelihood criterion at 1,000 bootstrap replicates in MEGA soft
ware version X [48]. Additional whole DNA-A genome sequences 
of tomato-infecting begomoviruses and the sweet potato leaf 
curl virus (SPLCV) as an outgroup (tomato-noninfecting bego
moviruses) were obtained from NCBI GenBank (Table S7) 
during the phylogenetic analysis.

Construction of TYLCV infectious clone  
and agro-inoculation
The novel isolated infectious clones of TYLCV were constructed 
using a partial tandem repeat of the full-genome viral DNA 
method, as described previously [49]. Two fragments (IC1-0.4-
mer and IC2-0.7-mer) of partial tandems were amplified from 
the full-length recombinant plasmid of novel TYLCV isolates 
using 2 primer sets (TYLCV-IC1-F/TYLCV-IC1-R and TYLCV-
IC2-F/TYLCV-IC2-R) (Table S8) for each group. Each fragment 
was ligated into a pGEM-T Easy Vector (Promega, Madison, 
USA) to generate pGEM-TYLCV-IC1 and pGEM-TYLCV-IC2. 
The cloned fragments were digested with KpnI, SphI, and 
BamHI and cloned into digested pCAMBIA-1303 (pCAM-
1303TYLCV-1.1mer) (Fig. 7B). The infectious constructs of the 
novel TYLCV groups were transformed into A. tumefaciens 
strain GV3101 using the freeze-thaw transformation method.

Tomatoes cultivar cv. Money-makers (TYLCV-susceptible) 
were planted in a walk-in growth chamber at Sungkyunkwan 
University (Korea) and five of 4-week-old plants per repli
cation (total of 15 plants/treatment) were inoculated with 
A. tumefaciens strain GV3101 containing pCAMBIA-1303 
TYLCV-KG1/KG2-infectious clones [49] as positive controls 
and TYLCV-KG3, TYLCV-KG4, and TYLCV-KG5 infectious 
clones in the present study. The TYLCV-resistant tomato 
breeding line harbors Ty-1, Ty-2, and susceptible cultivars that 
were inoculated with the 3 severe strains (TYLCV-KG1, 
TYLCV-KG3, and TYLCV-KG4). Mock plants and TYLCV-
susceptible lines were used as negative and positive controls, 
respectively. Cell cultures of each clone were grown at 28 °C 
in Luria-Bertani broth with rifampicin, gentamycin, and kan-
amycin until the optical density at 600 nm reached 1.0 and 
then inoculated on the apical side of plants using needles and 
plastic dropping pipette [50]. All inoculated plants were kept 
in a plant growth room with a photosynthesis period of 16 h 
of light and an air temperature of 28/22 °C (day/night).

Phenotype observation and PCR analysis
The phenotypes of plants were observed weekly after inocula-
tion for the TYLCV symptoms. Severity scoring was performed 
using a 4-point TYLCV symptom severity score according to 
Friedmann et al. [51], and TYLCV-infected genomic DNA was 
isolated using the FavorPrep Plant Genomic DNA Extraction 
Mini Kit (Favorgen, Ping-Tung, Taiwan). Then, the PCR results 
were detected with TYLCV-det-F/R under the same PCR con-
ditions for each plant every week after inoculation.

Viral copy number analysis
To quantify the TYLCV DNA after performing the analyzed 
relationship between viral DNA copy number and symptom 
development, we use a plasmid of pCAMBIA-1303 TYLCV-KG1 
as a standard in accordance with the absolute quantity standard 
curve [52] (Y = −3.36X + 37.75, slope = −3.36, intercept = 37.75, 
amplification efficiency = 0.98, and R2 = 0.998). The extracted 
TYLCV DNA from the infected tomato leaves in the agro-
inoculation experiment was quantified by obtaining DNA 
copies in 1 μl and calculating the average TYLCV DNA copies 
(copy number/μl) per sample. The TYLCV genomic DNA 
isolation from leaves of TYLCV-infected tomato plants was 
tested by real-time quantitative PCR (qPCR) every week after 
the inoculation of 5 different TYLCV groups. Reactions were 
performed using the SYBR premix Ex Taq (TaKaRa, Otsu, Japan) 
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with specific primer sets based on the sequence of the V1 coding 
gene (nucleotides 883 to 1085), and the elongation factor 1α 
(EF1α) gene was measured in parallel as an endogenous control 
(Table S6). qPCR was performed using a Rotor Gene Q ther-
mocycler (QIAGEN, Hilden, Germany), consisting of predena-
turation at 95 °C for 5 min, followed by 40 cycles of denaturation 
at 95 °C for 10 min, annealing at 60 °C for 20 s, and extension 
at 72 °C for 20 s. The annealing temperature was selected accord-
ing to the melting temperature of each primer.

ORF-TYLCV, Ty-1, and Ty-2 gene expression analysis
To analyze gene expression, 25 ng of purified total RNA of 
all tomato breeding lines was extracted using the RNeasy 
Plant Mini kit (QIAGEN, Hilden, Germany) and treated with 
deoxyribonuclease following the manufacturer’s instructions. 
Then, complementary DNA (cDNA) was synthesized using 
the CellScript All-in-One cDNA Master Mix (CellSafe, Yongin, 
Korea) according to the protocol of the manufacturer. Real-
time qPCR was performed in a Rotor Gene Q thermocycler 
(QIAGEN, Hilden, Germany) using similar conditions applied 
for the viral copy number analysis. The expression levels of 
TYLCV-ORF, Ty-1 [53], and Ty-2 [54] genes were determined 
by using specific primers (Table S9). An endogenous control 
(EF1α) was used to measure gene expression. The relative gene 
expression was calculated according to the following formula: 
2−∆∆CT [55].

Statistical analysis
In each experimental process, 3 biological replicates were used, 
and each experimental treatment was repeated 3 times. The 
results are presented as either mean ± SD or error bars. One-way 
or two-way analysis of variance (ANOVA) was applied to com-
pare statistical differences between the experimental groups. 
Statistical significance was defined as a P value of <0.05.
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